Proxy Config.yaml
Set model list, api_base, api_key, temperature & proxy server settings (master-key) on the config.yaml. 
| Param Name | Description | 
|---|---|
model_list | List of supported models on the server, with model-specific configs | 
router_settings | litellm Router settings, example routing_strategy="least-busy" see all | 
litellm_settings | litellm Module settings, example litellm.drop_params=True, litellm.set_verbose=True, litellm.api_base, litellm.cache see all | 
general_settings | Server settings, example setting master_key: sk-my_special_key | 
environment_variables | Environment Variables example, REDIS_HOST, REDIS_PORT | 
Complete List: Check the Swagger UI docs on <your-proxy-url>/#/config.yaml (e.g. http://0.0.0.0:4000/#/config.yaml), for everything you can pass in the config.yaml.
Quick Start
Set a model alias for your deployments.
In the config.yaml the model_name parameter is the user-facing name to use for your deployment. 
In the config below:
model_name: the name to pass TO litellm from the external clientlitellm_params.model: the model string passed to the litellm.completion() function
E.g.:
model=vllm-modelswill route toopenai/facebook/opt-125m.model=gpt-3.5-turbowill load balance betweenazure/gpt-turbo-small-euandazure/gpt-turbo-small-ca
model_list:
  - model_name: gpt-3.5-turbo ### RECEIVED MODEL NAME ###
    litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
      model: azure/gpt-turbo-small-eu ### MODEL NAME sent to `litellm.completion()` ###
      api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
      api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
      rpm: 6      # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
  - model_name: bedrock-claude-v1 
    litellm_params:
      model: bedrock/anthropic.claude-instant-v1
  - model_name: gpt-3.5-turbo
    litellm_params:
      model: azure/gpt-turbo-small-ca
      api_base: https://my-endpoint-canada-berri992.openai.azure.com/
      api_key: "os.environ/AZURE_API_KEY_CA"
      rpm: 6
  - model_name: anthropic-claude
    litellm_params: 
      model: bedrock/anthropic.claude-instant-v1
      ### [OPTIONAL] SET AWS REGION ###
      aws_region_name: us-east-1
  - model_name: vllm-models
    litellm_params:
      model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
      api_base: http://0.0.0.0:4000
      rpm: 1440
    model_info: 
      version: 2
litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
  drop_params: True
  success_callback: ["langfuse"] # OPTIONAL - if you want to start sending LLM Logs to Langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your env
general_settings: 
  master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
  alerting: ["slack"] # [OPTIONAL] If you want Slack Alerts for Hanging LLM requests, Slow llm responses, Budget Alerts. Make sure to set `SLACK_WEBHOOK_URL` in your env
For more provider-specific info, go here
Step 2: Start Proxy with config
$ litellm --config /path/to/config.yaml
Run with --detailed_debug if you need detailed debug logs 
$ litellm --config /path/to/config.yaml --detailed_debug
Using Proxy - Curl Request, OpenAI Package, Langchain, Langchain JS
Calling a model group
- Curl Request
 - Curl Request: Bedrock
 - OpenAI v1.0.0+
 - Langchain Python
 
Sends request to model where model_name=gpt-3.5-turbo on config.yaml. 
If multiple with model_name=gpt-3.5-turbo does Load Balancing
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "gpt-3.5-turbo",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ],
    }
'
Sends this request to model where model_name=bedrock-claude-v1 on config.yaml
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
      "model": "bedrock-claude-v1",
      "messages": [
        {
          "role": "user",
          "content": "what llm are you"
        }
      ],
    }
'
import openai
client = openai.OpenAI(
    api_key="anything",
    base_url="http://0.0.0.0:4000"
)
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml. 
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])
print(response)
# Sends this request to model where `model_name=bedrock-claude-v1` on config.yaml
response = client.chat.completions.create(model="bedrock-claude-v1", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
messages = [
    SystemMessage(
        content="You are a helpful assistant that im using to make a test request to."
    ),
    HumanMessage(
        content="test from litellm. tell me why it's amazing in 1 sentence"
    ),
]
# Sends request to model where `model_name=gpt-3.5-turbo` on config.yaml. 
chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000",  # set openai base to the proxy
    model = "gpt-3.5-turbo",                
    temperature=0.1
)
response = chat(messages)
print(response)
# Sends request to model where `model_name=bedrock-claude-v1` on config.yaml. 
claude_chat = ChatOpenAI(
    openai_api_base="http://0.0.0.0:4000", # set openai base to the proxy
    model = "bedrock-claude-v1",                   
    temperature=0.1
)
response = claude_chat(messages)
print(response)
Save Model-specific params (API Base, Keys, Temperature, Max Tokens, Organization, Headers etc.)
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
Step 1: Create a config.yaml file
model_list:
  - model_name: gpt-4-team1
    litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
      model: azure/chatgpt-v-2
      api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
      api_version: "2023-05-15"
      azure_ad_token: eyJ0eXAiOiJ
      seed: 12
      max_tokens: 20
  - model_name: gpt-4-team2
    litellm_params:
      model: azure/gpt-4
      api_key: sk-123
      api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
      temperature: 0.2
  - model_name: openai-gpt-3.5
    litellm_params:
      model: openai/gpt-3.5-turbo
      extra_headers: {"AI-Resource Group": "ishaan-resource"}
      api_key: sk-123
      organization: org-ikDc4ex8NB
      temperature: 0.2
  - model_name: mistral-7b
    litellm_params:
      model: ollama/mistral
      api_base: your_ollama_api_base
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Multiple OpenAI Organizations
Add all openai models across all OpenAI organizations with just 1 model definition
  - model_name: *
    litellm_params:
      model: openai/*
      api_key: os.environ/OPENAI_API_KEY
      organization:
       - org-1 
       - org-2 
       - org-3
LiteLLM will automatically create separate deployments for each org.
Confirm this via
curl --location 'http://0.0.0.0:4000/v1/model/info' \
--header 'Authorization: Bearer ${LITELLM_KEY}' \
--data ''
Wildcard Model Name (Add ALL MODELS from env)
Dynamically call any model from any given provider without the need to predefine it in the config YAML file. As long as the relevant keys are in the environment (see providers list), LiteLLM will make the call correctly.
- Setup config.yaml
 
model_list:
  - model_name: "*"             # all requests where model not in your config go to this deployment
    litellm_params:
      model: "openai/*"           # passes our validation check that a real provider is given
- Start LiteLLM proxy
 
litellm --config /path/to/config.yaml
- Try claude 3-5 sonnet from anthropic
 
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-D '{
  "model": "claude-3-5-sonnet-20240620",
  "messages": [
        {"role": "user", "content": "Hey, how'\''s it going?"},
        {
            "role": "assistant",
            "content": "I'\''m doing well. Would like to hear the rest of the story?"
        },
        {"role": "user", "content": "Na"},
        {
            "role": "assistant",
            "content": "No problem, is there anything else i can help you with today?"
        },
        {
            "role": "user",
            "content": "I think you'\''re getting cut off sometimes"
        }
    ]
}
'
Load Balancing
For more on this, go to this page
Use this to call multiple instances of the same model and configure things like routing strategy.
For optimal performance:
- Set 
tpm/rpmper model deployment. Weighted picks are then based on the established tpm/rpm. - Select your optimal routing strategy in 
router_settings:routing_strategy. 
LiteLLM supports
["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"`
When tpm/rpm is set + routing_strategy==simple-shuffle litellm will use a weighted pick based on set tpm/rpm. In our load tests setting tpm/rpm for all deployments + routing_strategy==simple-shuffle maximized throughput
- When using multiple LiteLLM Servers / Kubernetes set redis settings 
router_settings:redis_hostetc 
model_list:
  - model_name: zephyr-beta
    litellm_params:
        model: huggingface/HuggingFaceH4/zephyr-7b-beta
        api_base: http://0.0.0.0:8001
        rpm: 60      # Optional[int]: When rpm/tpm set - litellm uses weighted pick for load balancing. rpm = Rate limit for this deployment: in requests per minute (rpm).
        tpm: 1000   # Optional[int]: tpm = Tokens Per Minute 
  - model_name: zephyr-beta
    litellm_params:
        model: huggingface/HuggingFaceH4/zephyr-7b-beta
        api_base: http://0.0.0.0:8002
        rpm: 600      
  - model_name: zephyr-beta
    litellm_params:
        model: huggingface/HuggingFaceH4/zephyr-7b-beta
        api_base: http://0.0.0.0:8003
        rpm: 60000      
  - model_name: gpt-3.5-turbo
    litellm_params:
        model: gpt-3.5-turbo
        api_key: <my-openai-key>
        rpm: 200      
  - model_name: gpt-3.5-turbo-16k
    litellm_params:
        model: gpt-3.5-turbo-16k
        api_key: <my-openai-key>
        rpm: 100      
litellm_settings:
  num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
  request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout 
  fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries 
  context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
  allowed_fails: 3 # cooldown model if it fails > 1 call in a minute. 
router_settings: # router_settings are optional
  routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
  model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
  num_retries: 2
  timeout: 30                                  # 30 seconds
  redis_host: <your redis host>                # set this when using multiple litellm proxy deployments, load balancing state stored in redis
  redis_password: <your redis password>
  redis_port: 1992
You can view your cost once you set up Virtual keys or custom_callbacks
Load API Keys
Load API Keys from Environment
If you have secrets saved in your environment, and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.
os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
model_list:
  - model_name: gpt-4-team1
    litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
      model: azure/chatgpt-v-2
      api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
      api_version: "2023-05-15"
      api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY
s/o to @David Manouchehri for helping with this.
Load API Keys from Azure Vault
- Install Proxy dependencies
 
$ pip install 'litellm[proxy]' 'litellm[extra_proxy]'
- Save Azure details in your environment
 
export["AZURE_CLIENT_ID"]="your-azure-app-client-id"
export["AZURE_CLIENT_SECRET"]="your-azure-app-client-secret"
export["AZURE_TENANT_ID"]="your-azure-tenant-id"
export["AZURE_KEY_VAULT_URI"]="your-azure-key-vault-uri"
- Add to proxy config.yaml
 
model_list: 
    - model_name: "my-azure-models" # model alias 
        litellm_params:
            model: "azure/<your-deployment-name>"
            api_key: "os.environ/AZURE-API-KEY" # reads from key vault - get_secret("AZURE_API_KEY")
            api_base: "os.environ/AZURE-API-BASE" # reads from key vault - get_secret("AZURE_API_BASE")
general_settings:
  use_azure_key_vault: True
You can now test this by starting your proxy:
litellm --config /path/to/config.yaml
Set Custom Prompt Templates
LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml: 
Step 1: Save your prompt template in a config.yaml
# Model-specific parameters
model_list:
  - model_name: mistral-7b # model alias
    litellm_params: # actual params for litellm.completion()
      model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1" 
      api_base: "<your-api-base>"
      api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
      initial_prompt_value: "\n"
      roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
      final_prompt_value: "\n"
      bos_token: "<s>"
      eos_token: "</s>"
      max_tokens: 4096
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Setting Embedding Models
See supported Embedding Providers & Models here
Use Sagemaker, Bedrock, Azure, OpenAI, XInference
Create Config.yaml
- Bedrock Completion/Chat
 - Sagemaker, Bedrock Embeddings
 - Hugging Face Embeddings
 - Azure OpenAI Embeddings
 - OpenAI Embeddings
 - XInference
 - OpenAI Compatible Embeddings
 
model_list:
  - model_name: bedrock-cohere
    litellm_params:
      model: "bedrock/cohere.command-text-v14"
      aws_region_name: "us-west-2"
  - model_name: bedrock-cohere
    litellm_params:
      model: "bedrock/cohere.command-text-v14"
      aws_region_name: "us-east-2"
  - model_name: bedrock-cohere
    litellm_params:
      model: "bedrock/cohere.command-text-v14"
      aws_region_name: "us-east-1"
Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:
model_list:
  - model_name: sagemaker-embeddings
    litellm_params: 
      model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
  - model_name: amazon-embeddings
    litellm_params:
      model: "bedrock/amazon.titan-embed-text-v1"
  - model_name: azure-embeddings
    litellm_params: 
      model: "azure/azure-embedding-model"
      api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
      api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
      api_version: "2023-07-01-preview"
general_settings:
  master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
model_list:
  - model_name: deployed-codebert-base
    litellm_params: 
      # send request to deployed hugging face inference endpoint
      model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
      api_key: hf_LdS                            # api key for hugging face inference endpoint
      api_base: https://uysneno1wv2wd4lw.us-east-1.aws.endpoints.huggingface.cloud # your hf inference endpoint 
  - model_name: codebert-base
    litellm_params: 
      # no api_base set, sends request to hugging face free inference api https://api-inference.huggingface.co/models/
      model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
      api_key: hf_LdS                            # api key for hugging face                     
model_list:
  - model_name: azure-embedding-model # model group
    litellm_params:
      model: azure/azure-embedding-model # model name for litellm.embedding(model=azure/azure-embedding-model) call
      api_base: your-azure-api-base
      api_key: your-api-key
      api_version: 2023-07-01-preview
model_list:
- model_name: text-embedding-ada-002 # model group
  litellm_params:
    model: text-embedding-ada-002 # model name for litellm.embedding(model=text-embedding-ada-002) 
    api_key: your-api-key-1
- model_name: text-embedding-ada-002 
  litellm_params:
    model: text-embedding-ada-002
    api_key: your-api-key-2
https://docs.litellm.ai/docs/providers/xinference
Note add xinference/ prefix to litellm_params: model so litellm knows to route to OpenAI
model_list:
- model_name: embedding-model  # model group
  litellm_params:
    model: xinference/bge-base-en   # model name for litellm.embedding(model=xinference/bge-base-en) 
    api_base: http://0.0.0.0:9997/v1
Use this for calling /embedding endpoints on OpenAI Compatible Servers.
Note add openai/ prefix to litellm_params: model so litellm knows to route to OpenAI
model_list:
- model_name: text-embedding-ada-002  # model group
  litellm_params:
    model: openai/<your-model-name>   # model name for litellm.embedding(model=text-embedding-ada-002) 
    api_base: <model-api-base>
Start Proxy
litellm --config config.yaml
Make Request
Sends Request to bedrock-cohere
curl --location 'http://0.0.0.0:4000/chat/completions' \
  --header 'Content-Type: application/json' \
  --data ' {
  "model": "bedrock-cohere",
  "messages": [
      {
      "role": "user",
      "content": "gm"
      }
  ]
}'
Disable Swagger UI
To disable the Swagger docs from the base url, set
NO_DOCS="True"
in your environment, and restart the proxy.
Configure DB Pool Limits + Connection Timeouts
general_settings: 
  database_connection_pool_limit: 100 # sets connection pool for prisma client to postgres db at 100
  database_connection_timeout: 60 # sets a 60s timeout for any connection call to the db 
All settings
{
  "environment_variables": {},
  "model_list": [
    {
      "model_name": "string",
      "litellm_params": {},
      "model_info": {
        "id": "string",
        "mode": "embedding",
        "input_cost_per_token": 0,
        "output_cost_per_token": 0,
        "max_tokens": 2048,
        "base_model": "gpt-4-1106-preview",
        "additionalProp1": {}
      }
    }
  ],
  "litellm_settings": {}, # ALL (https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py)
  "general_settings": {
    "completion_model": "string",
    "disable_spend_logs": "boolean", # turn off writing each transaction to the db
    "disable_master_key_return": "boolean", # turn off returning master key on UI (checked on '/user/info' endpoint)
    "disable_reset_budget": "boolean", # turn off reset budget scheduled task
    "enable_jwt_auth": "boolean", # allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims
    "enforce_user_param": "boolean", # requires all openai endpoint requests to have a 'user' param
    "allowed_routes": "list", # list of allowed proxy API routes - a user can access. (currently JWT-Auth only)
    "key_management_system": "google_kms", # either google_kms or azure_kms
    "master_key": "string",
    "database_url": "string",
    "database_connection_pool_limit": 0, # default 100
    "database_connection_timeout": 0, # default 60s
    "database_type": "dynamo_db",
    "database_args": {
      "billing_mode": "PROVISIONED_THROUGHPUT",
      "read_capacity_units": 0,
      "write_capacity_units": 0,
      "ssl_verify": true,
      "region_name": "string",
      "user_table_name": "LiteLLM_UserTable",
      "key_table_name": "LiteLLM_VerificationToken",
      "config_table_name": "LiteLLM_Config",
      "spend_table_name": "LiteLLM_SpendLogs"
    },
    "otel": true,
    "custom_auth": "string",
    "max_parallel_requests": 0,
    "infer_model_from_keys": true,
    "background_health_checks": true,
    "health_check_interval": 300,
    "alerting": [
      "string"
    ],
    "alerting_threshold": 0
  }
}